

Jotaguard 100

Product description

This is a two component solvent free polyamine cured epoxy coating. It is a surface tolerant product that can be applied without dew point restrictions, and on damp and wet surfaces. It has good chemical, abrasion and impact resistance. Can be used as primer, mid coat, finish coat or as single coat system in atmospheric and immersed environments. Suitable for properly prepared carbon steel, galvanised steel, stainless steel, aluminium and a range of aged coating surfaces.

Scope

The Application Guide offers product details and recommended practices for the use of the product.

The data and information provided are not definite requirements. They are guidelines to assist with efficient and safe use, and optimum service of the product. Adherence to the guidelines does not relieve the applicator of responsibility for ensuring that the work meets specification requirements. Jotuns liability is in accordance with general product liability rules.

The Application Guide (AG) must be read in conjunction with the relevant specification, Technical Data Sheet (TDS) and Safety Data Sheet (SDS) for all the products used as part of the coating system.

Projects specified to the requirements in Performance Standard for Protective Coatings (PSPC)

For application and repair / maintenance requirements according to IMO MSC.215 (82) for dedicated Sea Water Ballast Tanks (WBT), and/or to IMO MSC.288 (87) for Cargo Oil Tanks of Crude Oil Tankers (COT) reference is made to the PSPC Appendix in this document.

Referred standards

Reference is generally made to ISO Standards. When using standards from other regions it is recommended to reference only one corresponding standard for the substrate being treated.

Surface preparation

The required quality of surface preparation can vary depending on the area of use, expected durability and if applicable, project specification.

When preparing new surfaces, maintaining already coated surfaces or aged coatings it is necessary to remove all contamination that can interfere with coating adhesion, and prepare a sound substrate for the subsequent product.

Inspect the surface for hydrocarbon and other contamination and if present, remove with an alkaline detergent. Agitate the surface to activate the cleaner and before it dries, wash the treated area using fresh water. Paint solvents (thinners) shall not be used for general degreasing or preparation of the surface for painting due to the risk of spreading dissolved hydrocarbon contamination. Paint thinners can be used to treat small localized areas of contamination such as marks from marker pens. Use clean, white cotton cloths that are turned and replaced often. Do not bundle used solvent saturated cloths. Place used cloths into water.

When the surface is an existing coating, verify with technical data sheet and application guide of the involved products, both over coatability and the given maximum over coating interval.

Process sequence

Surface preparation and coating should normally be commenced only after all welding, degreasing, removal of sharp edges, weld spatter and treatment of welds is complete. It is important that all hot work is completed before coating commences.

Soluble salts removal

Date of issue: 7 March 2023

Page: 1/14

This Application Guide supersedes those previously issued.

Application Guide Jotaguard 100

Soluble salts have a negative impact on the coating systems performance, especially when immersed. Jotun's general recommendations for maximum soluble salts (sampled and measured as per ISO 8502-6 and -9) content on a surface are:

For areas exposed to (ISO 12944-2): C1-C4: 200 mg/m² C5: 100 mg/m² Im1-Im3: 80 mg/m²

Carbon steel

Initial rust grade

The steel shall preferably be Rust Grade A or B (ISO 8501-1). It is technically possible to apply the coating to rust grades C and D, but it is practically challenging to ensure specified film thickness on such a rough surface, hence risk of reduced lifetime of the coating system. When steel of Rust Grade C or D is coated, the frequency of inspection and testing should be increased.

Initial inspection and pretreatment

Inspect the surface for contaminations and if present, remove with an alkaline detergent. Agitate the surface to activate the cleaner and before it dries, wash the treated area by Low-Pressure Water Cleaning (LPWC) to Wa 1 (ISO 8501-4) using fresh water.

Non-contaminated areas shall be washed down by Low-Pressure Water Cleaning (LPWC) to Wa 1 (ISO 8501-4) using fresh water to reduce the concentration of surface chlorides.

Metal finishing

All welds, sharp edges and corners shall be prepared to minimum grade P2 (ISO 8501-3) Table 1. For conformance to PSPC rules required preparation grade is P3.

All edges shall be ground to a minimum radius of 2.0 mm after a minimum three passes with a mechanical grinder fitted with appropriate abrasive. All sharp irregularities, burrs, slivers, slag and spatter on welds, whether apparent before or after blast cleaning, shall be removed before the commencement of coating application. Weld smoke shall be removed by washing by low-pressure Water Cleaning LP WC to Wa 1 (ISO 8501-4) using fresh water.

Defective welds shall be replaced and treated to an acceptable finish before painting. Temporary welds and brackets shall be ground to a flat finish after removal from the parent metal.

Pitting repair

Pittings in steel can be difficult to cover fully with most coatings. In some areas it is practically feasible to use filler to fill pittings. This should then be done either after the initial surface preparation or after application of first coat.

For tank coating and lining used for chemical exposure the recommendation is to fill pitts through welding, since using fillers may negatively affect the coating systems' chemical resistance and flexibility.

Abrasive blast cleaning

Application of protective coating shall commence before degradation of the surface standard occurs.

Cleanliness

After pre-treatment is complete, the surface shall be dry abrasive blast cleaned to Sa $2\frac{1}{2}$ (ISO 8501-1) using abrasive media suitable to achieve a sharp and angular surface profile.

Surface profile

Recommended surface profile is 45-85 μ m, grade Fine to Medium G (ISO 8503-2). Measure the achieved profile with surface replication tape (Testex) (ISO 8503-5) or by surface roughness stylus instrument (ISO 8503-4).

Abrasive media quality

Date of issue: 7 March 2023

Page: 2/14

This Application Guide supersedes those previously issued.

Application Guide Jotaguard 100

The selected abrasive must be compatible with both the surface to be blast cleaned and the specified coating system. The abrasive shall meet specifications as per relevant parts of ISO 11124 (Specification for metallic blast-cleaning abrasives), or ISO 11126 (Specification for non-metallic blast-cleaning abrasives). It should be sampled and tested as per relevant parts of ISO 11125 (metallic abrasives) or ISO 11127 (non-metallic abrasives). Dry storage of abrasive and shelter for blasting pots is necessary to prevent equipment becoming clogged with damp abrasive.

All abrasive blast media used should be new and not recirculated, with the exception of steel grit. If this is utilized the circulation process must include a cleaning process.

Compressed air quality

The supply of clean air to blasting pots must be secured to avoid contamination of abrasive and thereby of blast cleaned surfaces. Compressors must be fitted with sufficient traps for oil and water. It is also recommended to fit two water separators at the blasting machine to ensure a supply of moisture-free air to the abrasive chamber.

Dust contamination

At the completion of abrasive blasting the prepared surface shall be cleaned to remove residues of corrosion products and abrasive media, and inspected for surface particulate contamination. Maximum contamination level is rating 2 (ISO 8502-3) as per Figure 1. Dust size no greater than class 2.

Hand and Power Tool Cleaning

Power tool cleaning

Minor damage of the coating may be prepared to St 3 (ISO 8501-1). Suitable method is disc grinding with rough discs only. Ensure the surface is free from mill scale, residual corrosion, failed coating and is suitable for painting. The surface should appear rough and mat.

Overlapping zones to intact coating shall have all leading edges feathered back by sanding methods to remove all sharp leading edges and establish a smooth transition from the exposed substrate to the surrounding coating. Consecutive layers of coating shall be feathered to expose each layer and new coating shall always overlap to an abraded existing layer. Abrade intact coatings around the damaged areas for a minimum 100 mm to ensure a mat, rough surface profile, suitable for over coating.

Mechanical repairs are only accepted for minor areas of damage where abrasive blasting is expected to create more damage to the coating system than actual benefit to the performance of the coating system.

Water jetting

High pressure water jetting surface preparation refers to ISO 8501-4, for substrates previously coated either with a full coating system (surface DC A, DC B, DC C) or shop primer (surface DP I and DP Z). The surface definition for existing coating (DC) refers to the degree of coating breakdown according to ISO 4628. It is important before considering water jetting, to ensure that the specified coating system is compatible with the existing coating system. High pressure water jetting does not remove mill scale or create surface roughness, and is only useful for surfaces with an initial roughness suitable for the subsequent coat. Optimum performance is achieved with preparation grade Wa 2 (ISO 8501-4). Minimum preparation grade is Wa 1. For DP I and DP Z surface Wa 2 is accepted.

Maximum accepted grade of flash rust for any preparation is M (ISO 8501-4).

Alternatively minimum approved preparation grade is SSPC-SP WJ-2/ NACE WJ-2, Very thorough cleaning. Maximum accepted flash rust grade is Moderate (M).

Galvanised steel

Abrasive blast cleaning

The galvanised finish shall be smooth as is consistent for a protective coating and shall have no sharp fins, sharp edges, dross or zinc ash on the surface. If present, remove by mechanical cleaning methods. After removal of excess zinc and surface defects the area to be coated shall be degreased to ISO 12944-4, Part 6.2.4 Alkaline Cleaning. The galvanised surface shall be sweep blast-cleaned with the nozzle angle at 45-60° from perpendicular at reduced nozzle pressure to create a sharp and angular surface profile using approved non-metallic abrasive media. As a guide, a surface profile 25-55 μ m, grade Fine G; Ry5 (ISO 8503-2) should be achieved.

Examples of recommended abrasives are:

- Ferrite free almandite garnet grade 30/60 and 80 grade (US Mesh size)
- Aluminium oxide grade G24

Date of issue: 7 March 2023

Page: 3/14

This Application Guide supersedes those previously issued.

Hand and Power Tool Cleaning

After removal of excess zinc and surface defects the area to be coated shall be degreased with an alkaline detergent, washed by Low-Pressure Water Cleaning (LPWC) to a grade corresponding to the description of Wa 1 (ISO 8501-4) or higher standard and the surface abraded using mechanical or hand sanding methods using non-metallic abrasives or bonded fibre abrasive pads to remove all polish and to impart a scratch pattern to the surface. Do not use high speed rotational sanders.

Water jetting

Inspect the surface for process residues, hydrocarbon contamination and zinc corrosion by-products. If present, remove with an alkaline detergent. Agitate the surface to activate the detergent and before it dries, wash the treated area by Low-Pressure Water Cleaning (LPWC) to a grade corresponding to the description of Wa 1 (ISO 8501-4) or higher standard using fresh water.

Optimum performance is achieved with preparation to a grade corresponding to the description of Wa $2\frac{1}{2}$. Minimum preparation grade is Wa 1.

Aluminium

Abrasive blast cleaning

After pre-treatment of welds, sharp edges, removal of weld spatter and other surface contamination the surface shall be degreased using an alkaline detergent which is agitated with non-metallic brushes followed by rinsing using clean fresh water. The surface shall then be dry abrasive blast cleaned with an approved non-metallic abrasive media to create a sharp and angular surface profile. As a guide, a surface profile between 25-55 μ m, grade Fine to Medium G; Ry5 (ISO 8503-2) should be achieved.

Examples of recommended abrasives are:

• Ferrite free almandite garnet grade 30/60 and 80 grade (US Mesh size)

• Aluminium oxide grade G24

Water jetting

Surfaces not contaminated with hydrocarbon deposits shall be cleaned by Low-pressure Water Cleaning (LPWC) to a grade corresponding to the description of Wa 1 (ISO 8501-4) or higher standard using fresh water to remove all dusts, chloride and non-visible contamination.

Optimum performance is achieved with preparation to a grade corresponding to the description of Wa $2\frac{1}{2}$. Minimum preparation grade is Wa 1.

Stainless steel

Abrasive blast cleaning

The surface to be coated shall be dry abrasive blast cleaned as required for the specified surface profile using non-metallic abrasive media which is suitable to achieve a sharp and angular surface profile. As a guide, a surface profile corresponding to 25-55 μ m, grade Fine G; Ry5 (ISO 8503-2) should be achieved. Examples of recommended abrasives are:

- Ferrite free almandite garnet grade 30/60 and 80 grade (US Mesh size)
- Aluminium oxide grade G24

Chlorinated or chlorine containing solvents or detergents must not be used on stainless steel.

Coated surfaces

Shop primers

Shop primers are accepted as temporary protection of steel plates and profiles. Refer to the technical data sheet for the generic types accepted. Certain standards require pre-approval of the shop primer as part of a complete system. Contact your nearest Jotun office for specific system compatibility.

Before being overcoated the shop primer must be fully cured, clean, dust free, dry and undamaged. Inorganic zinc shop primers must be free of zinc salts (white rust).

Corroded and damaged areas must be blast cleaned to minimum Sa 21/2 (ISO 8501-1).

Date of issue: 7 March 2023

Page: 4/14

This Application Guide supersedes those previously issued.

Application

Acceptable environmental conditions - before and during application

Before application, test the atmospheric conditions in the vicinity of the substrate for the dew formation according to ISO 8502-4.

Winter grade	
Substrate temperature5 - 50	°C
Air temperature 5 - 60	°C

Product mixing

Product mixing ratio (by volume)

STANDARD GRADE	
Jotaguard 100 Comp A	3 part(s)
Jotaguard 100 Comp B	1 part(s)
WINTER GRADE	
Jotaguard 100 Comp A	3 part(s)

Induction time and Pot life

Paint temperature	23 °C
Standard grade	
Pot life	3 h
Winter grade	
Pot life	1.5 h
Petrobras test method: ABNT NBR 15742 Rev. 0	

Viscosity will increase after 1 hour. Refer to the Application Guide (AG) for additional information.

The temperature of base and curing agent is recommended to be 18 °C or higher when the product is mixed.

Thinner/Cleaning solvent

Cleaning solvent: Jotun Thinner No. 17

Date of issue: 7 March 2023

This Application Guide supersedes those previously issued.

Application data

Spray application

Airless Spray Equipment

Pump ratio (minimum) :	42:1
Pressure at nozzle (minimum) :	200 bar/2900 psi
Nozzle tip (inch/1000) :	19-25
Nozzle output (litres/minute) :	1.9-3.1
Filters (mesh) :	70

Several factors influence, and need to be observed to maintain the recommended pressure at the nozzle. Among factors causing pressure drop are:

- extended hoses or hose bundles

- extended hose whip-end line

- small internal diameter hoses

- high paint viscosity

- large spray nozzle size

- inadequate air capacity from compressor

- incorrect or clogged filters

Film thickness per coat

Typical recommended specification range

STANDARD GRADE

Dry film thickness Wet film thickness Theoretical spreading rate	125	-	250 255 4	µm µm m²/l
WINTER GRADE				
Dry film thickness	120	-	250	μm
Wet film thickness	125	-	255	μm
Theoretical spreading rate	8	-	4	m²/l

The resin system is subject to some shrinkage during the curing process. This results in lower dry film thickness and practical spreading rate lower than the theoretically calculated.

This product can be applied up to 50 % higher than maximum specified film thickness without loss of technical properties.

Film thickness measurement

Wet film thickness (WFT) measurement and calculation

Date of issue: 7 March 2023

Page: 6/14

This Application Guide supersedes those previously issued.

To ensure correct film thickness, it is recommended to measure the wet film thickness continuously during application using a painter's wet film comb (ISO 2808 Method 1A). The measurements should be done as soon as possible after application.

Fast drying paints may give incorrect (too low) readings resulting in excessive dry film thickness. For multi layer physically drying (resoluble) coating systems the wet film thickness comb may give too high readings resulting in too low dry film thickness of the intermediate and top coats.

Use a wet-to-dry film calculation table (available on the Jotun Web site) to calculate the required wet film thickness per coat.

Dry film thickness (DFT) measurement

When the coating has cured to hard dry state the dry film thickness can be checked to SSPC PA 2 or equivalent standard using statistical sampling to verify the actual dry film thickness. Measurement and control of the WFT and DFT on welds is done by measuring adjacent to and no further than 15 mm from the weld.

Ventilation

Sufficient ventilation is very important to ensure proper drying/curing of the film.

Stripe coating

The stripe coat sequence can be either of the following:

1. Surface preparation, stripe coat, full coat.

2. Surface preparation, full coat, stripe coat. This sequence can be used when a large substrate area has been prepared and leaving the substrate exposed for a long time while doing stripe coating could lead to surface deterioration.

It is important to pay special attention to edges, openings, rear sides of stiffeners, scallops etc. and to apply a stripe coat to these areas where the spray fan may not reach or deposit an even film.

When applying a stripe coat to bare metal use only a stiff, round stripe coating brush to ensure surface wetting and filling of pits in the surface.

Stripe coating shall be of a different colour to the main primer coat and the topcoat colour and should be applied in an even film thickness, avoiding excessive brush marks in order to avoid entrapped air. Care should be taken to avoid excessive film thickness. Pay additional attention to pot life during application of stripe coats. Jotun recommends a minimum of one stripe coat. However, in extremely aggressive exposure conditions there

Jotun recommends a minimum of one stripe coat. However, in extremely aggressive exposure conditions there may be good reason to specify two stripe coats.

Drying process

Do not attempt to speed up the curing process by blowing hot air on to the wet coating film as this may lead to skin drying/curing, entrapped solvents and consequently solvent blistering and inferior corrosion protection.

Coating loss

The consumption of paint should be controlled carefully, with thorough planning and a practical approach to reducing loss. Application of liquid coatings will result in some material loss. Understanding the ways that coating can be lost during the application process, and making appropriate changes, can help reducing material loss.

Some of the factors that can influence the loss of coating material are:

- type of spray gun/unit used

- air pressure used for airless pump or for atomization
- orifice size of the spray tip or nozzle
- fan width of the spray tip or nozzle
- the amount of thinner added
- the distance between spray gun and substrate
- the profile or surface roughness of the substrate. Higher profiles will lead to a higher "dead volume"
- the shape of the substrate target
- environmental conditions such as wind and air temperature

This Application Guide supersedes those previously issued.

Drying and Curing time

Substrate temperature	5 °C	10 °C	15 °C	23 °C	40 °C
STANDARD GRADE					
Surface (touch) dry			12 h	6 h	2 h
Walk-on-dry			15 h	9 h	3 h
Dry to over coat, minimum			15 h	9 h	3 h
Dried/cured for service			10 d	7 d	5 d
WINTER GRADE					
Surface (touch) dry	18 h	11 h	9 h	4 h	
Walk-on-dry	22 h	17 h	11 h	6 h	
Dry to over coat, minimum	22 h	17 h	11 h	6 h	
Dried/cured for service	18 d	14 d	10 d	7 d	

Measured according to ASTM D 1640 at 120 $\mu m,$ 25 °C and 60 % RH.

Drying and curing times are determined under controlled temperatures and relative humidity below 85 %, and at average of the DFT range for the product.

Surface (touch) dry: The state of drying when slight pressure with a finger does not leave an imprint or reveal tackiness.

Walk-on-dry: Minimum time before the coating can tolerate normal foot traffic without permanent marks, imprints or other physical damage.

Dry to over coat, minimum: The recommended shortest time before the next coat can be applied.

Dried/cured for service: Minimum time before the coating can be permanently exposed to the intended environment/medium.

Maximum over coating intervals

Maximum time before thorough surface preparation is required. The surface must be clean and dry and suitable for over coating. Inspect the surface for chalking and other contamination and if present, remove with an alkaline detergent. Agitate the surface to activate the cleaner and before it dries, wash the treated area by low-pressure water cleaning using fresh water.

If maximum over coating interval is exceeded the surface should in addition be carefully roughened to ensure good inter coat adhesion.

The referred intervals relate specifically to over coating with Jotun Performance Coating products.

Areas for atmospheric exposure

Average temperature during drying/curing	15 °C	23 °C	40 °C
Standard grade			
Itself	10 d	7 d	5 d
ероху	10 d	7 d	5 d
polyurethane	5 d	5 d	2 d
epoxy Passive Fire Protection	7 d	6 d	3 d

Date of issue: 7 March 2023

Page: 8/14

This Application Guide supersedes those previously issued.

Areas for immersed exposure

Average temperature during drying/curing	15 °C	23 °C	40 °C
Standard grade			
Itself	7 d	6 d	3 d
ероху	7 d	6 d	3 d
vinyl epoxy	7 d	5 d	3 d

Other conditions that can affect drying / curing / over coating

Repair of coating system

Damages to the coating layers:

Prepare the area through sandpapering or grinding, followed by thorough cleaning/vacuuming. When the surface is clean and dry the coating may be over coated by itself or by another product, ref. original specification.

Always observe the maximum over coating intervals. If the maximum over coating interval is exceeded the surface should be carefully roughened in order to ensure good intercoat adhesion.

Damages exposing bare substrate:

Remove all rust, loose paint, grease or other contaminants by spot blasting, mechanical grinding, water and/or solvent washing. Feather edges and roughen the overlap zone of surrounding intact coating. Apply the coating system specified for repair.

Areas with too low DFT:

Roughen the surface, vacuum and apply new coating according to specification.

Areas with too high DFT:

Areas with DFT above maximum specified for isolated areas shall be ground down to acceptable thickness, or down to bare steel and recoated.

Repair of damaged areas

Sags and runs can be caused by too high wet film thickness, too much thinner added or the spray gun used too close to the surface.

Repair by using a paint brush to smooth the film when still wet.

Sand down to a rough, even surface and re-coat if the coating is cured.

Orange peel can be caused by poor flow/levelling properties of the paint, poor atomization of the paint, thinner evaporating too fast or the spray gun held too close to the surface.

This can be rectified by abrading the surface and applying an additional coat after having adjusted the application properties or the application technique.

Dry spray can be caused by poor atomization of the paint, spray gun held too far from the surface, high air temperature, thinner evaporating too fast or coating applied in windy conditions.

Sand down to a rough even surface and re-coat.

Pinholes can be caused by entrapped solvents in the film or by incorrect application technique. Pinholes can be repaired as per procedure for damages to the coating layer or to the substrate, ref. above.

Coating film continuity

When required by the specification, the coating shall be tested for film discontinuity according to ASTM D 5162, test method A or B as appropriate for the actual dry film thickness. All recorded defects shall be repaired by best practical means.

Performance Standard for Protective Coatings (PSPC)

Date of issue: 7 March 2023

Page: 9/14

This Application Guide supersedes those previously issued.

PSPC Appendix (WBT / COT)

Application requirements particular for coating according to Performance Standard for Protective Coatings (PSPC) of cargo oil tanks of crude oil tankers to IMO Resolution MSC.288(87) and dedicated seawater ballast tanks to IMO Resolution MSC.215 (82)

Job specification

There shall be a minimum of two stripe coats and two spray coats, except that the second stripe coat, by way of welded seams only, may be reduced in scope where it is proven that the NDFT (nominal total dry film thickness) can be met by the coats applied in order to avoid unnecessary over thickness. Any reduction in scope of the second stripe coat shall be fully detailed in the CTF.

NDFT (nominal total dry film thickness)

NDFT 320 μ m with 90/10 rule. (Minimum 90 % of all DFT measurements shall be greater than or equal to the NDFT and none of the remaining 10 % measurements shall be below 0.9 x NDFT).

Maximum DFT 2000 μm is acceptable for isolated spots only, and should not extend to more than 1% of the total tank area.

PRIMARY SURFACE PREPARATION

Blasting and surface profile:

Cleanliness minimum Sa 2½ (ISO 8501-1) Surface profile 30-75 µm (ISO 8503-2)

Blasting shall not be carried out when:

- the relative humidity is above 85 %
- the surface temperature of steel is less than 3 °C above the dew point

Water soluble salts limit equivalent to NaCl

Maximum 50 mg/m² of sodium chloride (ISO 8502-6/9)

SECONDARY SURFACE PREPARATION

Steel condition

For steel preparation, PSPC makes reference to grade P2 (ISO 8501-3). All sharp edges are to be rounded to a radius of minimum 2 mm, subject to a three-pass grinding, or treated with an alternative process giving an edge profile that results in a dry film thickness retention corresponding to or better than a three pass grinding. Sharp edges mean all edges except natural rounded/rolled edges of sections.

Surface treatment

Pre-qualified shop primer

Retained, intact shop primer shall be cleaned by sweep blasting, high-pressure water washing or equivalent method. Damaged and corroded shop primer and welds shall be abrasive blast cleaned to minimum Sa 2½ (ISO 8501-1). Complete removal of shop primer is required.

Not pre-qualified shop primer

Intact shop primer shall be abrasive blast cleaned to minimum Sa 2 (ISO 8501-1). At least 70% of the intact shop primer shall be removed. Damaged and corroded shop primer and welds shall be abrasive blast cleaned to minimum Sa $2\frac{1}{2}$ (ISO 8501-1). Complete removal of shop primer is required.

SURFACE TREATMENT AFTER ERECTION

Cargo oil tanks (COT), IMO Resolution MSC.288 (87)

Erection joints minimum St 3 or Sa 2¹/₂ (ISO 8501-1) where practicable.

For inner bottom:

- Damages up to 20 % of the area to be coated to be treated to minimum St 3
- Contiguous damages over 25 m² or over 20 % of the area to be coated, Sa $2\frac{1}{2}$ shall be applied

For underdeck:

- Damages up to 3 % of area to be coated to be treated to minimum St 3
- Contiguous damages over 25 m² or over 3 % of the area to be coated, Sa 21/2 shall be applied

Date of issue: 7 March 2023

Page: 10/14

This Application Guide supersedes those previously issued.

- Coating in overlap shall be feathered

Profile requirements

In case of full or partial blasting surface profile $30-75 \ \mu m$ (ISO 8503-2).

Dust

Dust quantity rating 1 for dust size class 3 or larger (ISO 8202-3). Lower dust size classes to be removed if visible without magnification on the surface to be coated.

Water soluble salts limit equivalent to NaCl after blasting/ grinding

Maximum 50 mg/m² of sodium chloride (ISO 8502-6/9).

Contamination

No oil contamination.

Inspect the surface for contaminations and if present, remove with an alkaline detergent. Agitate the surface to activate the cleaner and before it dries, wash the treated area by Low-Pressure Water Cleaning (LPWC) to Wa 1 (ISO 8501-4) using fresh water.

Ventilation

Adequate ventilation is necessary for the proper drying and curing of coating. Ventilation should be maintained throughout the application process and for a period after application is completed. Required duration after the last full coat is indicated in Technical Data Sheet as "Dried/cured for service" under Drying and Curing time.

Environmental conditions

Coating shall be applied under controlled humidity and surface conditions, in accordance with the manufacturer's specifications. In addition, coating shall not be applied when:

- the relative humidity is above 85 %
- the surface temperature is less than 3 °C above the dew point
- the surface is wet or is likely to become wet

Testing of coating

Destructive testing should be avoided.

Dry film thickness shall be measured after each coat for quality control purposes. The total dry film thickness shall be documented after completion of the final coat, using appropriate thickness gauges.

Water ballast tanks (WBT), IMO Resolution MSC.215(82)

Erection joints minimum St 3 or Sa 21/2 (ISO 8501-1) where practicable.

- Damages up to 2 % of area to be coated to be treated to minimum St 3
- Contiguous damages over 25 m² or over 2 % of the area to be coated, Sa 2½ shall be applied
- Coating in overlap shall be feathered

Profile requirements

In case of full or partial blasting surface profile 30-75 µm (ISO 8503-2).

Dust

Dust quantity rating 1 for dust size class 3 or larger (ISO 8202-3). Lower dust size classes to be removed if visible without magnification on the surface to be coated.

Water soluble salts limit equivalent to NaCl after blasting/ grinding

Maximum 50 mg/m² of sodium chloride (ISO 8502-6/9).

Contamination

No oil contamination.

Inspect the surface for contaminations and if present, remove with an alkaline detergent. Agitate the surface to activate the cleaner and before it dries, wash the treated area by Low-Pressure Water Cleaning (LPWC) to Wa 1 (ISO 8501-4) using fresh water.

Ventilation

Adequate ventilation is necessary for the proper drying and curing of coating. Ventilation should be maintained throughout the application process and for a period after application is completed. Required duration after the last full coat is indicated in Technical Data Sheet as "Dried/cured for service" under Drying and Curing time

Environmental conditions

Coating shall be applied under controlled humidity and surface conditions, in accordance with the manufacturer's specifications. In addition, coating shall not be applied when:

- the relative humidity is above 85 %

Date of issue: 7 March 2023

Page: 11/14

This Application Guide supersedes those previously issued.

- the surface temperature is less than 3 °C above the dew point

- the surface is wet or is likely to become wet

Testing of coating

Destructive testing should be avoided.

Dry film thickness shall be measured after each coat for quality control purposes. The total dry film thickness shall be documented after completion of the final coat, using appropriate thickness gauges.

REPAIR AND MAINTENACE

Repair and maintenance procedures relevant to coating according to Performance Standard for Protective Coatings (PSPC) of cargo oil tanks of crude oil tankers to IMO Resolution MSC.288(87) and dedicated seawater ballast tanks to IMO Resolution MSC.215(82)

Scope:

The purpose with this chapter is to clarify the below repair procedure, and to implement a unified interpretation for each area to be repaired:

Block painting and pre-erection: these areas are not to be regarded as "after erection", and as such damaged calculation shall be carried out at this stage.

Superficial damages not exposing bare substrate:

Prepare the area through sandpapering or grinding, followed by thorough cleaning/vacuuming. When the surface is dry and clean the coating may be over coated by itself or by another product, ref. original specification. Always observe the minimum and maximum over coating intervals. If the maximum over coating interval is exceeded the surface should be carefully roughened in order to ensure good intercoat adhesion.

Damages exposing bare substrate:

Remove all rust, loose paint, grease or other contaminants by spot blasting, mechanical grinding, water- and/or solvent washing. Feather edges and roughen the overlap zone of surrounding intact coating. Apply the coating system specified for repair.

Damages smaller than 5 cm²:

Mechanical cleaning by abrasive sanding to a minimum St 3 (ISO 8504-3) with a rough surface profile. Damages larger than 5 cm²:

Dry abrasive blast cleaning to Sa 21/2 (ISO 8501-1), preferably by the use of vacuum blasting equipment.

Reference is made to MSC.1/Circ. 1330 (WBT) and MSC.1/Circ. 1399 (COT)

- Chapter 4.1 for coating condition assessment

- Chapter 5 for coating maintenance

- Chapter 6 for coating repair

Overlapping zones to intact coating shall be masked off with a minimum 200 mm distance to the damage and should cover the surrounding area so that overspray to sound coating does not occur during repair application. Edges of intact coating around damage shall be feathered to ensure a smooth transition from the coating to the prepared steel. Consecutive layers of coating shall be feathered to expose each layer and new coating shall always overlap to an abraded existing layer.

In cases where there are minor mechanical or stress related damages in a tank after sea-trial or water immersion testing, one has to consider the amount of damages compared to how many potential new damages will be made when re-installing scaffolding. For minor areas mechanical grinding and touch up is considered common practice. Hard to reach spots shall be repaired using best practical means and methods.

Areas with too low DFT:

Roughen the surface, vacuum and apply new coating according to specification.

Areas with too high DFT:

Areas with with DFT above maximum specified for isolated areas shall be ground down to acceptable thickness, or down to bare steel and recoated.

Date of issue: 7 March 2023

Page: 12/14

This Application Guide supersedes those previously issued.

Quality assurance

The following information is the minimum required. The specification may have additional requirements.

- Confirm that all welding and other metal work has been completed before commencing pre-treatment and surface preparation

- Confirm that installed ventilation is balanced and has the capacity to deliver and maintain the RAQ

- Confirm that the required surface preparation standard has been achieved and is held prior to coating application

- Confirm that the climatic conditions are within recommendations in the AG, and are held during the application

- Confirm that the required number of stripe coats have been applied
- Confirm that each coat meets the DFT requirements in the specification
- Confirm that the coating has not been adversely affected by rain or other factors during curing

- Observe that adequate coverage has been achieved on corners, crevices, edges and surfaces where the spray gun cannot be positioned so that its spray impinges on the surface at 90° angle

- Observe that the coating is free from defects, discontinuities, insects, abrasive media and other contamination

- Observe that the coating is free from misses, sags, runs, wrinkles, fat edges, mud cracking, blistering, obvious pinholes, excessive dry spray, heavy brush marks and excessive film build

- Observe that the uniformity and colour are satisfactory

All noted defects shall be fully repaired to conform to the coating specification.

Caution

This product is for professional use only. The applicators and operators shall be trained, experienced and have the capability and equipment to mix/stir and apply the coatings correctly and according to Jotun's technical documentation. Applicators and operators shall use appropriate personal protection equipment when using this product. This guideline is given based on the current knowledge of the product. Any suggested deviation to suit the site conditions shall be forwarded to the responsible Jotun representative for approval before commencing the work.

For further advice please contact your local Jotun office.

Health and safety

Please observe the precautionary notices displayed on the container. Use under well ventilated conditions. Do not inhale spray mist. Avoid skin contact. Spillage on the skin should immediately be removed with suitable cleanser, soap and water. Eyes should be well flushed with water and medical attention sought immediately.

Accuracy of information

Always refer to and use the current (last issued) version of the TDS, SDS and if available, the AG for this product. Always refer to and use the current (last issued) version of all International and Local Authority Standards referred to in the TDS, AG & SDS for this product.

Colour variation

When applicable, products primarily meant for use as primers or antifoulings may have slight colour variations from batch to batch. Such products and epoxy based products used as a finish coat may chalk when exposed to sunlight and weathering.

Colour and gloss retention on topcoats/finish coats may vary depending on type of colour, exposure environment such as temperature, UV intensity etc., application quality and generic type of paint. Contact your local Jotun office for further information.

Reference to related documents

The Application Guide (AG) must be read in conjunction with the relevant specification, Technical Data Sheet (TDS) and Safety Data Sheet (SDS) for all the products used as part of the coating system.

When applicable, refer to the separate application procedure for Jotun products that are approved to classification societies such as PSPC, IMO etc.

Symbols and abbreviations

TDS = Technical Data Sheet
AG = Application Guide
SDS = Safety Data Sheet
VOC = Volatile Organic Compound
MCI = Jotun Multi Colour Industry (tinted colour)

Date of issue: 7 March 2023

Page: 13/14

This Application Guide supersedes those previously issued.

Application Guide Jotaguard 100

- µm = microns = micrometres g/l = grams per litre g/kg = grams per kilogram m²/l = square metres per litre mg/m² = milligrams per square metre psi = unit of pressure, pounds/inch² Bar = unit of pressure RH = Relative humidity (% RH) UV = Ultraviolet DFT = dry film thickness WFT = wet film thickness
- RAQ = Required air quantity PPE = Personal Protective Equipment EU = European Union UK = United Kingdom EPA = Environmental Protection Agency ISO = International Standards Organisation ASTM = American Society of Testing and Materials AS/NZS = Australian/New Zealand Standards NACE = National Association of Corrosion Engineers SSPC = The Society for Protective Coatings PSPC = Performance Standard for Protective Coatings IMO = International Maritime Organization ASFP = Association for Specialist Fire Protection

Disclaimer

The information in this document is given to the best of Jotun's knowledge, based on laboratory testing and practical experience. Jotun's products are considered as semi-finished goods and as such, products are often used under conditions beyond Jotun's control. Jotun cannot guarantee anything but the quality of the product itself. Minor product variations may be implemented in order to comply with local requirements. Jotun reserves the right to change the given data without further notice.

Users should always consult Jotun for specific guidance on the general suitability of this product for their needs and specific application practices.

If there is any inconsistency between different language issues of this document, the English (United Kingdom) version will prevail.